








served in the long-term survivor. Three of 4 IFN-β–treated
animals exhibited substantial lymphadenopathy, compared to
controls. Two IFN-β–treated animals also showed evidence of
brain congestion at necropsy.

Immunohistochemical analysis revealed no apparent differ-
ences in EBOV-Z antigen distribution or load in macaques
succumbing on or before 10 days after infection—in either
therapeutic group or controls. However, IFN-β–treated ma-
caques that succumbed after day 10 revealed apparent clearing
of EBOV from lymphoid organs including spleen (Figure 2A)
and lymph nodes (data not shown), something confirmed by
analysis of organ viral burden (Supplementary Figure 1A). Of
note, the long-term survivor (previously reported, in part [45])
exhibited EBOV-Z staining in atypical, nontarget tissues in-
cluding brain, lung, and pancreas (Figure 2B). In addition, in-
fectious virus was recovered from cerebrospinal fluid
(Supplementary Figure 1A). This macaque also developed
neurological symptoms of disease beginning 17 days after in-
fection, including hind leg stiffness and tremors. This pro-
longed survivor also exhibited pneumonia, with widespread
infiltrates (Figure 2B). Immunostaining revealed numerous
EBOV-Z–positive cells that appeared to be alveolar macro-
phages (Figure 2B, inset).

Functional Genomic Analysis of IFN-β Treatment
In an attempt to gain further insight into the effects of manip-
ulating the type I IFN axis during EBOV-Z infection, we

performed comparative gene expression profiling of PBMCs in
a subset of EBOV-Z–infected macaques, treated with IFN-β or
not treated, analyzing the enrichment of gene ontology term
representation in sets of genes whose expression profiles clus-
tered by treatment group. Of interest, despite the lack of de-
monstrable treatment-specific differences in peripheral blood
lymphocyte counts or lymphocyte apoptosis in lymphoid
tissue, there was a major transcriptional effect of IFN-β
therapy on genes important in adaptive immune regulation
(Supplementary Table 2). While the nature of these studies
precluded further functional analysis of EBOV-Z–specific
T-cell and B-cell responses, these differential gene expression
patterns suggest the hypothesis that an important therapeutic
effect of IFN-β therapy in this infection occurs via bolstering
of the vigor and/or breadth of the adaptive immune response
—in this infection whose usual fatal course is marked by
immune dysregulation and a failure to mount effective adap-
tive immune responses [10].

More Intensive IFN-β Therapy Provides No Additive Survival
Benefit
We subsequently tested the utility of more intensive (daily,
higher dose) IFN-β therapy for EBOV-Z infection. As shown
in Supplementary Figure 2A, and in confirmation of the data
described above, IFN-β treatment led to significant prolonga-
tion of the mean time to death (10.8 days) compared with
controls (8.45 days; the intraexperimental control succumbed

Figure 2. Atypical, multiorgan foci of the Zaire species of Ebola virus (EBOV-Z) replication in the long-term survivor treated with interferon beta (IFN-
β). A, Clearance of EBOV-Z antigen from the spleen. Comparative immunohistochemical analysis of EBOV-Z antigen in the spleen of the prolonged
survivor (lower right panel), a control animal (upper left), and 3 macaques that received IFN-β and died on day 10 (upper right), day 12 (lower left), and
day 29 (lower right). Intracellular EBOV-Z antigen is visible as brown staining. B, Multiorgan involvement. Histological examination of the lung (hematox-
ylin-and-eosin staining, upper left) reveals diffuse leukocytic infiltration. Immunohistochemical analysis of the lung (upper right) reveals EBOV-Z antigen
in cells similar in appearance to alveolar macrophages (inset). EBOV-Z antigen is also evident in unusual anatomical sites such as the pancreas (lower
left) and brain (lower right). Abbreviations: EBOV, Ebola virus; H&E, hematoxylin-and-eosin; rIFN, recombinant interferon; Tx, treatment.
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on day 11; P = .0019 by Wilcoxon rank-sum test). However,
such treatment intensification did not provide any additive
benefit (compare with Figure 1). As with lower dose IFN-β
therapy, a trend toward lower plasma burden was observed in
treated macaques (Supplementary Figure 2B). Of interest, a
trend toward higher peripheral leukocyte and lymphocyte
counts was observed in such animals (Supplementary
Figure 2C and 2D), Notably, however, there was a marked
trend toward increased concentrations of serum interleukin 6
with intensive IFN-β treatment (Supplementary Figure 2E),
along with a parallel trend in biochemical measures of liver
and kidney compromise (Supplementary Figure 2F), some-
thing that may provide insight into the lack of additive benefit
of more intensive therapy (Supplementary Figure 1C).

IFN-β Therapy Has Clinical Benefit in MARV Infection
Given the prolongation of survival time in experimental
EBOV-Z infection, we tested the efficacy of IFN-β in experi-
mental MARV infection. Four macaques were infected with a
lethal dose of MARV-Musoke. Three were treated with IFN-β
(35 µg/kg) administered 1hour after infection, and thence
daily for 14 days; 1 received saline as a control. Importantly,
one of the macaques treated with IFN-β was fully protected
from the MARV infection (Figure 3A), surviving past the
study endpoint (day 28) and ultimately being euthanized 112
days after infection. At this time, immunohistological analysis
revealed no evidence of MARV persistence (data not shown).
The autopsy was otherwise notable for mild meningoencepha-
litis (data not shown). Omitting this survivor, the mean time
to death for the IFN-β–treated group was 14.5 days, compared
to 10.8 days in the control group when supplemented with 5
historical controls. When the survivor animal was censored
from the analysis, the mean time to death between the experi-
mental and control groups was statistically significantly differ-
ent (Figure 3A, P = .0186, Wilcoxon rank-sum test). IFN-β
therapy was associated with a marked trend toward suppres-
sion of viremia (Figure 3B) as well as with a trend toward
lower peripheral leukocyte counts (Figure 3C), but an in-
creased peripheral lymphocyte percentage (Figure 3D). As
with EBOV infection, the IFN-β–treated long-term survivor of
MARV exhibited marked suppression of systemic cytokine
production (data not shown). Clinical data are presented in
Supplementary Table 1. As opposed to intensive treatment of

Figure 3. Interferon beta (IFN-β) therapy provides a survival benefit in
experimental Marburg virus (MARV) infection. A, Mortality. Rhesus ma-
caques were infected with 1000 plaque-forming units of MARV-Musoke
and treated with (i ) recombinant human IFN-β at 35 µg/kg, 1 hour postin-
fection and every day until day 14 (n = 3; red line) or (ii ) an equivalent
volume of sterile saline at identical time points as a control (n = 1, sup-
plemented with 5 historical controls: total n = 6; blue line). The intraex-
perimental control animal succumbed on day 11 postchallenge, while 1
of the 3 macaques that received IFN-β treatment was protected from
infection and survived past the study endpoint. Omitting this surviving
animal, the mean time to death for the IFN-β–treated experimental
group was 14.5 days, whereas the mean time to death was 10.8 days in
the control group (intraexperimental control died on day 11, P = .0186,
Wilcoxon rank-sum test.) B, Viremia. Plasma MARV-Musoke kinetics in
individual macaques treated with IFN-β (n = 3; red lines), and saline

Figure 3 continued. (n = 1; intraexperimental control; blue line). Mean
plasma viremia for 6 available matched, untreated MARV-Musoke historical
control animals is provided for reference (black dashed line). C, Peripheral
blood leukocytes. Peripheral blood white blood cell kinetics in experimental
macaques and available (n = 6) historical controls. D, Peripheral blood
lymphocytes. Kinetic analysis of lymphocytes in macaques infected with
MARV and treated daily with IFN-β (n = 3; red lines) or saline (n = 1; blue
line). Abbreviations: PFU, plaque-forming units; WBC, white blood cell.
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EBOV, intensive IFN-β treatment of MARV was not associat-
ed with a trend toward increases in serum biochemical
markers of liver or kidney compromise (data not shown).

DISCUSSION

The results presented here represent the first in vivo evalua-
tion of IFN-β as a treatment for filovirus infection. These data
indicate that IFN-β may have therapeutic promise: early post-
exposure treatment significantly increased survival time in
macaques infected with EBOV-Z and MARV. Its role,
however, is likely to be as an adjunct to other agents—no
EBOV-Z–infected macaque survived, and the small sample
size precludes assessment of the statistical significance of the
observed successful clearance of MARV infection with IFN-β
treatment. Long-term survival of EBOV-Z infection treatment
was also associated with spread of viral replication to organs
not normally productively infected. Whether IFN-β has thera-
peutic potential after disease onset remains to be defined.

Functional genomic analysis revealed that, despite the high
amounts of circulating IFN-α observed in EBOV-Z infection,
IFN-β treatment altered the regulation of immune response
genes, a result consonant with previous literature demonstrating
quantitative and qualitative differences in biological activities
among the type I IFNs. The relevant mechanism(s) of action of
IFN-β remain underdetermined, however. Mechanistic analysis
in these studies was inhibited by the low number of animals
used, for ethical reasons. As IFN-β treatment was associated
with a trend toward lower plasma and tissue viral burden, it is
reasonable to postulate direct effects on viral replication as well
as on the adaptive immune response. As for immunoregulatory
effects on events thought to be important in filovirus pathogene-
sis, findings are even less clear. No evidence that IFN-β treat-
ment of EBOV-Z infection altered lymphocyte apoptosis was
obtained. Blunted systemic proinflammatory cytokine produc-
tion was seen in both the long-term survivor of EBOV-Z and
the macaque that cleared MARV, findings consistent with previ-
ous studies correlating lower levels of proinflammatory cyto-
kines with increased survival or survival time [4, 43, 46, 47].
Whether this occurred secondary to lower viral load [33] and/or
effects of IFN-β on proinflammatory cytokine production [48, 49]
remains unclear.

Delayed inhibition of type I IFN signaling provided comple-
mentary insight. The shortened mean time to death observed
with such treatment underscores the critical role of type I
IFNs in host defense against filoviruses, something evident as
well in mouse models [50]. Such treatment had no observable
effect on lymphocyte apoptosis. Taken together with the IFN-
β treatment data, these findings suggest that dysregulated type
I IFN production does not play a role in this feature of patho-
genesis. Concordant with IFN-β treatment results, type I IFN
receptor blockade was associated with a trend toward increases

in plasma (though not tissue) viral burden, as well as increases
in serum concentrations of proinflammatory cytokines.

The pathogenesis of filovirus HF remains poorly under-
stood. There are practical reasons for this. Natural disease is
rare and occurs in places that hamper investigation. Further-
more, filoviruses need to be studied in high-containment set-
tings. Finally, whereas human filovirus HF is closely mirrored
in macaques, human disease does not appear to be mimicked
in experimentally tractable small animal models. Despite
mechanistic lacunae, the current studies suggest a potential
therapeutic role for IFN-β, in combination with other thera-
peutic and/or preventive agents. That said, the fact that pro-
longed survival was associated with viral spread to tissues not
usually noted to exhibit productive viral replication is cause
for caution. Follow-up studies will be necessary to define both
mechanism(s) of action of IFN-β as well as therapeutic utility
in combination with other agents.
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